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The use over certain modestly branched (A ~- n) partitional models of Young's Sn- 
module decomposition algorithm in the high-n limit is considered for SU(m) x Sn(~ 9-') 
nuclear spin algebras associated with both NMR and ro-vibrational (R-V) aspects of spe- 
cific cluster isotopomers. This approach allows additional dual-group projective map- 
ping over simple Hilbert spaces to be derived from the natural embedding of higher finite 
groups in specific S~ groups, for either the original simply-reducible (SR) SU(2)-, or var- 
ious related higher non-SR SU(m) x S~, forms. The work arises from earlier interests in 
the NMR spin symmetry of the [ 11B 1 H]22 borohydride anions and the nature of analo- 
gous ro-vibrational (R-V) spin statistical problems for higher n > 12-fold clusters. Here, 
the role of the scalar invariants is shown to be critical in determining the spin algebras of 
isotopomeric clusters within Cayley's theorem for some particular depth of SU(m) 
branching in the SU(m) x Sn dual-group algebra. Certain additional quasi-geometric 
models for the full A (> ASh (self-associate) dominant-sector set of(A ~- n) partitions-of-n 
are discussed, in the context of specific determinacy of natural S~ D ~ group embeddings 
at a given branching level. 

1. Introduct ion  

Physical insight into the nature of  n-fold identical spin many-body problems of  
N M R  [1-5] owes much to the early work of  Corio [1], Jones [2] and, from its further 
realisation under  an automorphic  group which may be related to the purely rota- 
t ional symmetry  operations [5], to that  of  Balasubramanian [6] in the 1980s. These 
concepts apply to "r ig id"  molecules, which on N M R  time-scales are rapidly tum- 
bling in a fluid medium. 

The Biedenharn and Louck [7] viewpoint of  (boson) mapping arising f rom 
dual-group projective operators over a carrier space and other mathemat ical  stud- 
ies of  scalar invariants [4] and Cayley algebras [8] allow various extensions to these 

© J.C. Baltzer AG, Science Publishers 



312 F P. Terame / High-n limit for  SU(m ) x Sn modules in N M R  

ideas; in addition once n >__ 6-fold spin cluster problems are considered, the concept 
of induced (subduced) representations [9] and the body of generalised mathemati- 
cal work on the ~Z;(n, C) and S, groups [9-11] play an essential role. The contrast- 
ing nonrigid multi-cluster NMR problem was originally treated by Longuet- 
Higgins [12] in 1963, prior to it being perceived as an aspect of semi-direct product 
symmetry [13], or more generally as a generalised wreath-product spin symmetry 
[14]. Applications in both NMR and ro-vibrational (R-V) statistical spectra have 
been discussed by Balasubramanian [15]. For the purposes of the present paper, we 
shall not dwell on the case of non-rigid NMR forms, beyond noting its close asso- 
ciation with representations of the symmetric groups [11 a, b]. 

The work reported here arises from the projective aspects of (A ~- n) partitions- 
of-n, with quasi-geometric parallels within their ,9, ; ~ models. It has some similar- 
ity to ideas developed by Coxeter, and referred to by him as polytopes [16]. Our 
present models are Sn-modules which are amenable to S,-algorithmic decomposi- 
tion [10]. This is determined by the level of their SU(p) (p < m) branching. They are 
also (A ~- n) partitional models of SU(m) x Sn J. G subduced spin algebras for gen- 
eral [A]n, [AX](~ I') specific isotopomeric clusters. Hence, the irrep structure of each 
monocluster originates from a set of model (A ~- n) = {:A:} partitions [10] over the 
M-weights of {I/M) }. 

Indeed for NMR, it has been established [17] that thep < m SU(p) branched par- 
titions of all possible orderings over the full SU(m) fields constitute a complete set, 
defining the bases of all identical n-fold//-type spin clusters. Use of the (inner) 
direct product formalisms extends these results from (theoretical) monoclusters to 
all [AX. . . ] : type NMR systems [18]. 

Since the implicit recoupling of spins considered in the context of rovibrational 
(R-V) spin statistics has analogous origins, the conceptual ideas given here likewise 
apply to the study of many cluster R-V spectroscopic 'weight' problems. 

The advent of pulse-NMR [19] has led one to consider the symmetry aspects 
[5,20,21] inherent in such formalisms and how extended projective mapping [22] 
ideas apply over augmented spin spaces. The most notable feature here is the need 
to retain the v-recoupling labelling in describing the Hv carrier subspaces [22] from 
which arise the full set of {D k (l~l) x ~'[al (v) } (SU(2) x Sn) irreps. For more general I i 
isotopomeric clusters, some initial insight into the simple Hilbert space aspects is 
an essential pre-requisite. We shall focus here on extending a recent discussion of 
the identical-H(D) 12-fold lXB-borohydride ions [23] to the (10, 11, 12) trideutero, 

11 2 the (1, 2, 3, 10, 11, 12) or the (4, 5, 6, 7, 8, 9) hexadeutero [ Bl2Hl2-,~Dn~] - and 
r (I,) elated isotopomeric molecular forms, in respect of the novel [A]n ' monocluster 
aspects. The recursive inner product aspects required to define the full N M R  sys- 
tem, or R-V cluster species, is too extensive and well-known a topic to give here in 
any detail. For any present purposes, we stress general conceptual aspects of the 
modelling from (~ ~- n) partitions. In particular, two aspects of dual group mapping 
are focussed on for their importance in typical models of the specific Sn D ~ natural 
embeddings to which Cayley's theorem applies [24,25]. 
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2. Or igins  oflow-m branched higher-n (A ~- n) mode l  l imit  for module 
d e c o m p o s i t i o n  

The use of  (A ~- n) partitions-of-n in modelling higher dual unitary spin algebras 
and in demonstrat ing the completeness of the hierarchy of  all reordered forms 
(over full SU(m) fields) has been given in our 1990 work [17]. Subsequently, we have 
examined the value of the higher-n limit of S , -module  decomposit ion of  such mod-  
est SU(m) branched (numeric) models, using the algorithmic techniques of  enu- 
mera t ion  of  the associated Kostka coefficients [26,27] presented by Sagan [10]. 
Such discussions of  Young 's  rule are based on fitting semi-normal contents to 
Young  box tableaux shapes. Provided the branching of  interest is of a low/modes t  
form, the consequence of such enumerative techniques generates some limiting set 
of  Kostka  {Aa[~,] } coefficients, once a certain (high) value of n is reached, i.e. with- 
out any further variation in the {Ax[~,]} set with incremental-n, for the specific m- 
branching. Here, the 'm' corresponds to a value of (2Ii + 1 ) and 'n' to the [A]. spin 
cluster size, respectively. 

+ 

Given its combinatorial  derivation, it would be surprising if there were not a lim- 
iting form for the {A;q;~, l } set. In addition, certain standard reqtlirements apply: 
e.g., the initial Aain] and final A;q;~,=;q components  of  the set are necessarily unity, 
o r  

A~[nl = A~[~ l = 1. (1) 

To demonstrate  the general limits we shall consider the SU(3) and SU(4) branch- 
ings for A = :n - 4 ,  22: and A = :n - 4 ,  211:, in contrast to the SU(6) branching 
:n - 5, 15: under :A: --- (A t- n) S , -module  decomposition. The 'n' of the partit ions 
considered here will be taken as some values typical of spin clusters associated with 
borohydride ions or fullerene clusters: viz. n = 6 (8) in the lower range, or n = (10) 
12 (14) and n = 20 (24) in the higher region. 

For  our first two example of S,-modules  - initially with n = 6 (8, 12) - it may 
be demonstra ted that  

:k: = :n - 4,22: --+ {[n],2[n - 1, l ] , 3 [ n -  2,21, [n - 2,111; 

and 

a[n- 3, 3],2[n - 3,21], - ;  [n - 4,22]} 

:A': = : n - 4 , 2 1 1 :  ~ {[n] ,3[n-  1, 1 ] ,4 [n -  2 ,213[n-  2, 11]; 

(2a) 

bin- 3, 3],4[n - 3,21], [n - 3, 13];... [n - 4,22], In - 4,211]}, (3a) 

within which the numeric 'a' and 'b' values for these S6-modules are non-maximal  
(or subset(s) of  As) with 'a' = 1 and 'b' = 2, compared to those for higher Sn-mod- 
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ules. Natural ly,  only a restricted subset {-, -, [n - 4, 22] } of irreps occurs and these 
are late in-dominance-sequence irreps, and so frequently associated with unit 
Kostka  coefficients. 

In contrast  with the higher n = 12 case, one finds now 'a' = 2 and 'b' = 3 in their 
respective decompositions; these now correspond to the high-n limit. In conse- 
quence, the module(s) decompose into 

:n - 4,22: ~ {In], 2[n - 1, 1 ] ,3 [n -2 ,2 ] ,  [ n -  2, 11]; 

2 [ n -  3, 31,2[n - 3 ,21] , - ; [n -4 ,4 ] ,2 [n -4 ,31] , [n -4 ,221}  , (2b) 

:n - 4 , 2 1 1 :  ---, {[n], 3[n - 1,114[n - 2, 21, 3[n - 2, 11]; 

3 [ n -  3, 31,4[n - 3,21], [n - 3, 13]; 

[n - 4, 4], 2[n - 4, 31], [n - 4, 22], [n - 4,211]}. (3b) 

On considering the A = :n - 5, 15: module  as an aspect of SU(6) branching - 
utilising a more compact  no t a t i on -  one finds that 

:n -- 5, 15:($7) = {1,5, 10, 10; 9,20, 10; --, 11, 10, 15, 5; --, --, 5,4, 1}£, (4a) 

:A:(Ss) = {1,5, 10, 10; 10, 20, 10;4, 15, 10, 15, 5; 5, 6, 5, 4, 1 },t~, (4b) 

where £t  is the unit (standard dominance (> ordered) set of  Sn-irreps and now 
the non-maximal  coefficients of  a subset are shown underlined. The final l imit ing 
set of  Kostka  coefficients (for 12 < n < 20, . . . )  for :A: = :n - 5, 15: spans 

:A:(S~>~2) = {1,5, 10, 10; 10, 20, 10; 5, 15, 10, 15, 5; 1,4, 5, 6, 5, 1},~, (4c) 

where we have used the Z(SI2) characters established by Ziauddin [28] in the mid- 
1930s. In all of  the above examples, the S~-algorithm adopted within the conven- 
tions of  ref. [10] may be realised [26,27] simply as 

A~[;~,] = i, final; from ~ @(shape A'; semi-normal contents A). 
i 

(5) 

There is a possible alternative method which derives the Kostka  coefficients from 
the (:;~: (~) Young permutat ional  characters, by working back from the least domi- 
nant  :In: properties and noting that the {A;q;~,]} associated with the :1 n: module  are 
identical to the Z(Sn) principal characters of a specific symmetric group. The 
upper-left skew-triangular form of the ~:;~:(~(S~)) sets was given in ref. [27] for 
6 < n < 8 Sn groups. Also, the form of the Kostka  coefficients within this projective 
formalism follows directly from the definition [10] o fa  S~-module: 
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i=2 

This approach starting from the least-dominant sector is complementary to the ear- 
lier one for model  S~-module decompositions. The value of such modelling [23,29] 
and of  all these results for spin (cage) clusters arises from combining these theoreti- 
cal aspects with certain projective invariance properties for :A: models under  the 
isomorphic rotat ional  symmetry Sn l G. This implies the S~ 3 G embedding is a 
natural  one, which is determinate up to and including the specific SU(m) branch 
depth being investigated. 

3. Rea l i sa t ion  o f  { [A] (Sn) ~ F} corre la t ive  m a p p i n g s  for  genera l  SU(m > 3) 
b r anch ings  

F rom the established Kostka  coefficient and the determinable { ~ i ( ~ ) } ( S  n J, ~) 
properties of the :A: models under the automorphic  spin symmetry, one has a direct 
pa thway to establishing the [A] symmetry correlated to the irreps of some natural ly 
embedded finite group. The method of  calculation follows the difference scheme 
from the most  significant {In], [n - 1, 1], . . .}  ((>_ [Asa]) sector of the hierarchy, 
using the Kostka  terms in sequential calculations, as a straightforward extension to 
the method  given by Corio [1] in discussing the (simply reducible A~[~, 1 = 1) SU(2) 
dual group invariance properties, as for the bi-partite irreps: 

[n - r, r] --- :n - r, r: - :n - r + l, r - l:, V1 < r < n / 2 .  (8) 

The form of calculation which follows from the recursive use of  

[A] = [ n -  r , r - r ' ,  r'] = :A : -  ~ A;qx, l[A' ] (9) 
)~' ~,~ 

is given in some detail in earlier work [26,29], and in the context of model  :A:($12) 
modules in two recent papers [23]; it is rather too lengthy to include here in any 
detail, but  may be found in the appendices to ref. [23b]. It suffices to point out that  
the recursive sequence of difference calculations starts from the least branched Sn- 
modules,  and proceeds by evaluating all members of the {[n - r, r], [n - r - 1, r, 1], 
[n - r - 2, r, 2 ] , . . . ,  [n - r - 2, r, 1, 1], [n - r - 3, r, 2, 1], . . .}  hierarchies, since the 
higher branching aspects in any one SU(m) x Sn algebra, e.g., [A] = [n - 4, 2, 2] or 
[n - 5, 3, 1, 1], do not  occur in either of  the lower-r :A: = :n - r - 1, r, 1:, or, 
:n - r - 2, r, 1, 1: Sn-modules. The power of  the approach will be appreciated by 
noting that  it gives the following representative examples of  {[A] ~ F}($12) map- 
pings f rom the [ 11 B] 12 monocluster:  

[6, 6] ~ {10, 10, 14, 2, 2}~($12 ~ As = Z) ,  (10) 



316 F.P. Temme / High-n limit for SU(m) xSn modules in NMR 

[6,51] ~ {16, 75, 97, 59, 59}~ , 

[6,42]---, {55,197, 234, 122, 122}]~, 

[6,411] ~ {42, 206, 246, 164, 164}~, 

[6,33] --, {21, 114, 123,93,93}]~, 

together with the self-associate irreps: 

[6,214] --~ {41,138,185, 97, 97}~ , 

[42,22] ~ {65,174,245,109, 109}~. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Finally, for modules beyond the self-associate (SA) form(s), no new information 
has been contributed; the corresponding irreps are already defined by the associate 
[A] / [A'] pair relationship(s): 

[A'] (post SA) = [A] ® [ln], Vn of & .  (17) 

4. Higher  [A]/' clusters: Complete { J IM)  } sets over (re-ordered) { :A: }(m < 4,- 
branched) sets 

For the modest n-fold [A] (Ii) spin cluster, the methods developed in ref. [17] may 
be extended to SU(4, 6)xS,, algebras; as examples, using a unit vector g13 over all 
{(A ~- n)} forms within 

gl~* = { : n : , : n -  1, l:,:n - 2 , 2 : , : n -  2, 11:,. . .}. (18) 

Hence, the complete {I/M)} under SU(3, 4)xS6, for the [A]6 clusters with Ii = 1 
and 3/2 are given, respectively, as 

{ I / M ) )  = 

(1 

--,1 

- ,1 ,1  

, , -1 ,1  

- ,  - ,  2, - ,  - ,  1 

- ,  1, , , , 2 ,  

\ 1 , - , - , 1 ,  1 , - ,  1 

~3 (19) 

and 
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-- ,1 

- - ,1 ,1  

-,1,-,1,1 / 
- , - , 2 , - ,  1, 1 

{ l l m ) }  - - ,  1 , - ,  1 , - ,  3 ~ "  (20) 

1,-,1,1,1,1,1 / 
- ,  1 , - , 1 , - , 4 , - , - ,  1 . 

- ,  1 , 2 , - , - , 2 ,  1, 1, 1 ) 

, , ,2,2,2,-,-,2_ 
H e r e  the sets s h o w n  span  0 <_ M _< I = ~ i  Ii, and  the last  subse t  o f  each  corre-  
sponds  to  the scalar  invar ian t  (A ~- n) p- tuples ,  assoc ia ted  wi th  M = 0 for  the  clus- 
t e r u n d e r  S U ( m )  x &,(J. G)a lgebra .  

Hence ,  we have  def ined the under ly ing  bases  for  [H]6, [2D]6, [riB]6 and  [11B,]6 
6-fold  m o n o c l u s t e r s  inherent  in the (1 ,2 ,  3; 10, 11, 12), or  (4, 5, 6, 7, 8, 9), hexadeu-  
te ro  11B-borohydr ide  ions. Similarly,  the  [2D]9 and  [11B]9 monoc lus t e r s  o f  the  spe- 
cific (1, 2, 3) t r i h y d r o b o r o d e u t e r i d e  ion under  P([HnB]3)® P([2DlIB]9 ) fo l low 
f r o m  the co r r e spond ing  I = 1, or  3 /2 ,  9-fold  monoc lus t e r  bases  and  the S R  reduci-  
ble bases  o f  the  [H]n clusters.  These  bases  are set ou t  in Tab les  1 and  2. 

Table 1 
The hierarchy of A (p < 3) tuplar models defining the 9-fold identical/,. = 1 NMR cluster problem. 
These A models and those of Table 2 are analogues to the ,56 J. O and $12 l .As - Z models discussed, 
respectively, in earlier work [26, 23]. 

M Dimension A,p = 2 overp = 3 A,p = 3, reordered 

9 1 :9: 
9 :81: 

7 45 :72: :8-1: 
156 :63: :711: 

5 414 :54: :7-2: :621: 
882 :45: :531:, :612: 

3 1554 :36: :6-3: :522:, :441: 
2304 :27: :432:, :351:, :513: 

1 2907 :18: :5-4: :423:, :342:, :261: 
0 3067 : - 9: :333: :414:, :252:, :171: 

{M}, total: 19 683 
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5. (A ~- n) mode l  invariance properties over {Xi} (~), for invariant forms: 
Sn ~_~ S14 

Recognition of scalar invariants, for their importance in yielding a focus to the 
determinacy questions associated with subduced finite group SU(m) x Sn .~ G spin 
algebras, may be found in the recent literature [29], as well as in the earlier work of 
Sullivan and Siddall-III [4]. Their discussion of the role of Casimir invariants (in 
terms of unitary algebras) in respect of the $6 I O representations is pertinent here. 
The invariance and subduced group representational properties of some typical 
scalar invariants [30], in the form of (A ~- n) model forms as numerical :A: p-tuples, 
are inherent in n-fold spin clusters, once an automorphic finite Sn ~ ~ group is con- 
sidered in the N M R  spin symmetry. Whilst our focus is necessarily on determinable 
irreps under natural embedded algebras such as Sn D G, with the finite group repre- 
senting the hierarchical structure within the intra-cluster coupling, some apprecia- 
tion of the wider origins of indeterminacy in various SU(m) x Sn + ~ spin algebras 
is essential. 

First, indeterminacies arising from ~ finite group order under circumstances 
where the classic Cayley theorem criteria [24,25] 

,1 = / G /  (21) 

in fact does not apply are designated as 'indeterminacies of the first kind'. The 
Sullivan and Siddall-III discourse [4] demonstrates that in addition at some higher 
SU(m) branching, a limit to (21)-Cayleyan determinacy exists, i.e., even in cases 
where the initial SU(2, 3)xS~ ; ~ algebra is determinable under the condition (21), 
or is otherwise determinable. Such higher m-branching induced indeterminacies 
will be referred to as 'indeterminacies of the second kind'. Their origins may be 
traced back (in part) to degeneracies which arise whenever the scalar invariant 
form(s) exhibit a non-distinct invariance set, {Xi(~)}(S~ I ~), from that of some 
preceding SU(m - i) subset, between {:A:} component sets. 

Naturally, any form of indeterminacy is simply a reflection of the mis-match 
between the model forms and the nature or extent of operators under the distinct 
group symmetries. The case actually discussed in ref. [4] is seen as an absolute inde- 
terminacy, in the sense that the SU(m) branching level is not attainable under the $6 
group. 

In the following illustrations, drawn from SU(m) x S,  ~ ~ models correspond- 
ing to scalar invariant modelling of specific SU(m) branching under $6 N S~ N $14, 
$20 are often caused by a weak accidental-degeneracy induced indeterminacy. For 
such phenomena, it is only necessary to consider the :A: (R :ASA: (S,) component 
A I- n aspects, as the least dominant sector has its own natural (and allowed) non- 
simply reducible properties. 

Hence, it is appropriate to set out the ASA self-associate forms for S~ groups, as 

ASA = {321;4211; {54,333}; {52111,4321}; } (22) 
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for n = 6 (8); n = 9 (10), respectively. For n = 12 (14), one has the more extended 
ASA sets:  

)~SA : {6214,53212, and 4422}(S12); {7215,63213, and 542211}($14). (23) 

The extended ASA set for $20 has been given previously [31]. 
Returning to the scalar invariant components of {A ~- n} = {:A:}(Sn :n = 6(9)), 

we note their embedded symmetry invariance properties: 

{Xi}(:33:) ---- {20, 2, 4, 0, 0}~($6 ~ O) ~ {2, 2, 2, 2, 2}]~ ---* {4,4, 6}~'($6 J. 793), 

{Xi}(:222:) = {90,0, 6,0, 6)~ --o {6, 3,9,9, 12}F ~ {18, 18, 30}1 ~' , (24) 

which may be contrasted with that for the embedded $9 group, 

{X/}(:333:) = {1680, 6, 6}t~($9 ~. ~3) ~ {564, 558}F"($9 ~ G3). (25) 

For the S10 ~ 795 embedding, one finds that the spin-site invariance properties are 

{X/}(:4411:) - {6300, 0, 0, 0}~ --o {630,630, 1260, 1260}]~(S10 I 795), 

{X/}(:3322:) -- {25 200, 0, 0, 0}~ --+ {2520,2520,5040,5040}1 ~ (26) 

for A ~- n $10 models. Under $12 ~ .A5 = Z, the invariance set from mapping onto 
icosahedral automorphic NMR spin symmetry takes the form 

{Xi}(:4422:) -- {207 900, 180, 0, 0,014~(812 ~L .'45) 

--o {3510, 13860, 17370, 10350, 10350}F(S~2 ~ A5 -- Z),  

{Xi}(:3333:) = {369600, (4! = 24),0,0, 0}~ 

--o {6168,24648,30792, 18480, 18480}~. (27) 

Finally for the totally encapped octahedron 1, the $14 ~ O scalar invariant forms 
are of interest within the specific enumerations (4)(2) = 12 under the Ca operation 
and (~)(2) = 40 under C2. Here the final :11: sites are on the implied rotational Ct 
axes, so that the invariant A l- n forms over the class algebra yield 

{Xi}(:6611:)($14 ]. O ) -  {168168, 12, 40, 0, 0}~ 

{7016, 7016, 14020, 21016, 21016}]~($14 1 (9), (28) 

{Xi}(:442211:) = {37 837 800, 0, 360, 0, 0}~ 

- { 1576 620, 1576 620, 3153 240, 4729 680, 4729 680}]~, (29) 

1 See footnote 2. 



F.P. Temrne / High-n limit for S U (m ) x Sn modules in NMR 321 

{xi}(:333311:) = {67 267 200, (4! = 24),0, 0, 0}q~ 

{2 802 808,2 802 808,5 605 592,8 408 400,8 408 400}]~ 

(30) 
for SU(4)(6) branchings. It is noted that the automorphic encapping process 
ensures the distinctness of the invariance sets and hence the determinacy associated 
with these group embeddings for the type of systems discussed by Quong et al. 
[32]. 

6. Cayleyan determinacy o fSn  ~ ~for  [A]n spin clusters: A quasi-geometric 
view 

The [A]n, n = 20, 24, spin clusters under the $20 1 2" and $24 ~. O algebras exhibit 
additional points of interest, in that their isomorphic rotational symmetry is asso- 
ciated with a cage polyhedral structure, as found for $12 1 2" and 812 J. 2" ~ 793 
above. For both the $24 J. O and $12 ~ 793 isomorphic symmetries, one notes that 
the Cayley criteria apply [25], as n = 24 =/$24 ~ O/and n = 6 =/S12(~ Z) ]. 793/; 
this yields a geometric lemma analogous to the well-established algebraic criter- 
ium. This takes the form [24,29], 

"that for all spin clusters to which Cayley's theorem applies, the Ct axes corre- 
sponding to the isomorphic rotational symmetry operators under the embedded 
algebra will be found to non-coincident with any of the model spin sites". (31) 

The more general low n-fold clusters, for which the Cayley criteria does not 
apply, need to be examined for the presence of indeterminacy. This may be done 
either, by searching for degeneracies in theirp-tuplar (A I- n) model invariance sets, 
or alternatively, by examining the nature of their implied correlative mappings: 

[ASA](Sn) ~ { i ' , f  , l f l , . . . }~(Sn I G). (32) 

A determinable set of irreps to that level of branching would imply that the resul- 
tant set of subduced irreps should retain the original self-associacy property. Cases 
of spin cluster involving indeterminacy of the second kind, for SU(m > 3) and 
further branching, have been demonstrated [29, 32, b] for (88 ~ O) or its subgroups. 
In addition, an examination of $9 J. C3 p-tuples implies that over the invariance set 
in this system also there are degeneracies present, which involve model SU(4, 5) :A: 
scalar invariants. 

Whilst investigation of further 'indeterminacies of the second kind' are called 

2 Multifaceted cappings are referred as an 'encapping' [33]. 
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Appendix 

For  convenience of  the reader, a brief glossary of  special symbols is 
below: 

G 

(~ ~- n) 

:A: 

m,  H 

z(&) 

ASA 

A 

(> 

IF~ 

Sn-module  

{D × 

given 

a finite group; Sn J~ G, finite group subduct ion (restricted to 
the ~ group algebra), -- Sn D ~, i.e. an embedding  of  a finite 
group into a specific Sn group.  

a (model) par t i t ion of  n (into p parts within the SU(p) level of  
branching).  

a p- tuple  numerical  realisation onto  Sn, or on a regular  poly- 
hedral  Sn I G fig. 

" reserved"  integers, associated with SU(m _< n/2) × Sn dual  
group algebras. 

the characters of  a specific (n-index) symmetr ic  group.  

self-associate form - the # hatch symbol is used to identify 
[Ash] forms. 

in general a Young  tableau or (A k n)(Sn) part i t ion,  as 
above. 

s tandard  dominance  ordering of  A ~- n forms: i.e., {[n], [n - 1, 
1],., [z~SA], ", [In]}. 

cardinali ty (order) of a group,  as in ~][a] m[alXl~ 1 ~ ~]igi(~), 
for Sn groups = nI, where rn[~] is the mult ipl ici ty o t  [A] and gi 
the cycle(class) order. 

a mathemat ica l  structure for which, ~ i g i ( i  ~: (~) (Sn) =/Sn/;  
it is decomposable  over a set {[Z]} involving a set of  {A~[a,]} 
Kos tka  coefficients. 

the permuta t iona l  character  for :A: fo rm over the S~ cycle 
set. 

the set of  Kos tka  coefficients of  a Sn-module  decomposi t ion-  
under l ined numbers  belong to a subset of the high-n limit 
decomposi t ions.  

a mapp ing  onto,  or a 1 : 1 correlation. 

Liouville space irrep set over the dual group SU(m) x Sn car- 
rier space. 
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for, it suffices to note here that neither in the S12 ,~ I cases, nor in the (en)capped 2 
$14 .L O, which corresponds to the tentative borohydride structure proposed by 
Quong et al. [32a], is there any evidence for such indeterminacy, i.e. up to the SU(6) 
branching level. Indeed in the latter case, we have noted that the presence of the 
inclusion structure serves to lift the degeneracy previously found to be associated 
with simple cubes as polyhedral N M R  symmetry forms. Likewise, truncation of a 
cube to yield a (8, 3, 3)-polyhedral form within rotational subgroups isomorphism 
serves a similar purpose for the [A]24 N M R  monocluster. Indeed, this exhibits 
Cayleyan [25] noncoincidence of the (73 isomorphic rotational operators to any of 
the model spin sites [24,29]. 

7. Some mapping aspects derived from symmetry  axes of  cage polyhedra 
[34,35] 

A somewhat selective overview follows on the nature of S12D(S 6 ~. O) 
D $6 ~ 793 ® $6 J. 793, or the analogous $20 D. . .  D $9 ~ D3 @ $9 I 793 chain of spin 
symmetries, for isotopomeric cage geometries, beyond the scalar invariant model 
aspects discussed earlier in section 5. 

7.1. CASEOFS12 D $6 ~ D3 

First, one enumerates combinatorially the :A:(SU(m) x $6 l D3) model. Over 
the full standard (> dominance order, this becomes 

/6//11/ !1 / 6j :51: 6, 0, 0 1, 1, 2 

{X;} :42: = 15, 0, 3 ¢ ---, 4, 1, 5 1~($6 1 793) (33) 

:411: 30, 0, 0 5, 5, 1 0 |  

:33: ] 20, 2, 0 4, 4, 

and 

{xi} 

321 /6001/:101020 
:3111: 120, 0, [20 ,  20, 40 

:222: - 90, 0, ~ --+ [18 ,  12, 30 

:2211: 180, 0, / 3 0 '  30, 60 

:214: 360, 0, \ 60 ,  60, 120 

1?, (34) 

from which it follows that the chain process 8 6 ~ O D S 6 .L ~)3 correspond to the 
correlative mapping 
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and 

[6]'  
[51] 

[42] 

[411] 

[33] , 

1 , - ,  1 , - , 2  1]~($6 
- ,  1 , - ,2 ,  1 / 
- , 2 , - ,  1 , - ]  

J. O) --, 

, 

- , 1 , 2  

3 , - , 3  

1,3,3 

- , 3 ,1  

]~($6 J, 793) (35) 

[321] ~ / 
[313 ] 
[222] -~ 
[2212 ] 
[214 ] 

- , - , 2 , 2 , 2  

1 , - , - , 1 , 2  

2 , - ,  - , - , 1  

- ,  1, 1 , 2 , -  

~ - , - ,  1 , - ,  1 

]~(S 6 ~, O) --+ 

2, 2, 6 

3, 1, 3 

3, - ,  1 

- ,  3,, 3 

1, - 2 

~(s6 J. 793), 

(36) 

where the 41: hatch marking denotes a self-associate irrep; the subsequent sets 
derived from these Ash should retain an overall set self-associacy, as seen over the 
$6 D O D 793 chain of natural group embeddings. 

On account of the lack of degeneracies over all these :A: = (A I- n) models for 
all the accessible SU(m) branching, it may reasonably be held that the inner product 
spin algebras for the (1, 2, 3; 10, 11, 12) hexadeutero- (or the (4, 5, 6, 7, 8, 9) hexa- 
deutero-) 12-fold 11B borohydrides are determinable algebras governed by 

FT = (pli=l/2 ® 1~Ii=1)($6 ~, 793) ® ( 1"aI/=3/2 ® FI/'=3/2)($6 ,L 793). (37) 

They are associated with the specific component invariance terms: 

{Xi)---- {64,4, 8]~, 

= {729, 9, 27]~, 
= {4096, 16, 64}~, 

for Ii = 1/2, 

fo r / , .=  1, 

for Ii = 3/2,  (38) 

from which the sub-total invariance set associated with ( r  ® r I'=1)(86 J, "D3) and 
the analogous (F' ® F")t'=V2(S6 ~ 793) direct product components become, respec- 
tively, 

{X/} = {46 656, 36,216}g, 

{X'i} = {16 777 216, 256, 4096~($6 ~ 793). (39) 

In consequence, the total invariance and irrep sets clearly span the sets 

{Xi}(®)(S6 ~ 793) = {782 757 789 696,9216,884 736}~, or 

F(®)(S6 £ 793) = {130 459 192 320, 130 459 192 320,260 919 260 160}]~ 

(40) 
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The detailed development of the component Latin square {Xi} (®) invariance alge- 
bra over the individual (outer-)M subspaces is too extensive a topic to develop 
here. 

A general point of interest is seen in the quasi-geometric viewpoint which applies 
to systems for which the Cayley criteria holds - such as / 7 9 3 / =  6 = n of 86. 
Analysis now gives a contrasting physical insight, i.e. compared to the nature of the 
earlier isomorphism to a simple octahedral form of regular (3, 3, 3, 3) polyhedra 
[34], in which the Ca, Ca and one (72 axis necessarily must pass through one, or 
other, pair of spin-sites associated with realising the component (A F n)(SU(m)) 
models. 

7.2. BRIEF COMMENTS ON Sl2 D S 3 (~ 89 ~. C3 NMR SPIN SYSTEMS 

Analogous full treatments of the cage form of [AX]9[A'X']3 bicluster NMR sys- 
tem from the recognition of the underlying automorphic structural invariance 
aspects: :9: / 

:81: 

:72: 

:63: 

:54: 

yield 

1, 1 

9, 0 

36, 0 

84, 6 

126, 0 

¢, (41) 

/ ,9,, 1// 
E81 / 2 
[7211 ~ 127' 0 ~--* 9, 
[631/ 148, 6 18, 
[54] ,/ \ 42, 6 10, 

3 

9 I?(S9 J. C3). 

15 

16 

(42) 

As noted, the more generally branched models may not be determinable in their 
higher dual group (unitary) aspects. This is a direct consequence of accidental 
degeneracy amongst the scalar invariant component (A F n) forms, :3321: and 
:32212: of SU(4) and SU(5). By implication the spin algebra associated with these 
higher branchings are indeterminate. There would also appear to be a weaker 
degeneracy, involving 4-tuple :6111 :, but the latter does not act as a system M = 0 
scalar invariant. 

On comparing the difference in the order of the 793 and O automorphic rotational 
symmetry groups, the former SU(5) result is comparable to the Sullivan and 
Siddall-III SU(m > 6) x $6 NMR symmetry observation [4], in which the branch- 
ing is not accessible under the low /(Sn J.)G/group cardinality. 
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Fig. 1. Diagram illustrating the dispositions about the C3 (spin-site non-coincident) axis of 
$12 ~ $12 J. Z ~ $6 .[ 793 ® $6 .[ 793 ~ 793, the NMR spin group, a subgroup of 793a, the molecular 
symmetry group for (1,2, 3:10, I 1, 12) like substituted (or (4, 5, 6, 7, 8, 9) like-substituted) 12-cage bor- 
ohydride isotopomer ions. Note that one pair of larger triangles, within the geometric solid, have been 
included to stress the (?3 symmetry about this rotational axis. These $12 D ... ~ 793 group chain 
NMR spin symmetries are the simplest known forms (beyond the trivial D3 symmetry) and the mid- 
face centred axis is an element typical of a Voronoi polyhedra, as discussed in a recent related work 

[35]. 

7.3. ON THE $20 D ($9 l 793)® ($9 ~ 793)CAGE-CLUSTER SYSTEMS 

Whi l s t  this h igher  cage-cluster  sys tem does not  cor respond  to a spin sys tem 
to which  Cay ley ' s  t heorem cri teria applies, it still exhibits more  promise  for  the 
absence o f  degeneracy  t h a n  the preceding $9 ~ C3 case, largely on the basis o f  its 
encapped- l ike  s t ructure .  This  opens up the promise  o f  fur ther  insight  in to  
i so topomer ic  spin cage-cluster  forms cor responding  to cer ta in  h igher  regular  
po lyhed ra  [33], in add i t ion  to the fullerene i so topomer  cages discussed in refs. 
[24,29]. 

v 

Fig. 2. Projective illustration of the rotational dispositions about the 1, 20 C3 (spin-site co-incident) 
axis of the D3 (nuclear spin subgroup) isotopomers of the D3d cage molecules, 1, 20-disubstituted 
dodecahedrane, or (2, 3, 4:17, 18, 19)(or 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)substituted dodecahe- 
drane. The former corresponds to $20 D Sis D $9 ~ 793 ® $9 ~[ D3 ~ 793, whereas the latter involves 
$20 D $12 ~ 793 ® $6 ~ 793 spin symmetries. The ten nuclear spin sites on the anterior faces are shown 
in heavier relief compared to those of the posterior faces. Sites 1 and 20 are on the symmetry axis at the 

centre of this projection. 
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8. Concluding remarks 

The role of the isomorphic symmetry properties of regular polyhedra, as 
defined by the regular geometric solids vertex indices [34], is of special value in 
the physical understanding of p-tuple (A t-n) modelling of spin algebras on 
account of the automorphic nature of NMR and its nuclear spin group. Further, 
the value of Biedenharn and Louck ideas on mapping [7] in the context of NMR 
is enhanced by an appreciation of scalar invariants [30]. The nature of v- 
recoupling is especially valuable in the study of the explicit structure [22] of 
SU2 x Sn Liouville carrier space, where the recoupling term(s), in one or other 
form, are explicit labels necessary for the retention of simple reducibility proper- 
ties. The additional n -  2 scalar invariant terms are an important part of the 
symmetry aspects of NMR. They point to the existence of the {D~(IJ) x ~[~](v)} 
irrep sets, as part of the mapping over the {]I~ILo} carrier subspaces [22] with var- 
ious practical aspects of utility in spin dynamics [19-21]. The ideas presented 
here are necessary for the use of such augmented spaces over a wider range of 
spin systems. 

The contrasting ro-vibration spin weight aspects of cage-clusters have become 
more important in recent chemical physics research, following extensive work on 
fullerene and other cage isotopomers [29]. Furthermore, some recent chemical 
interest in encapped molecular geometric structures [33] suggests that the under- 
lying associated invariants and :A:(Sn) models as S~-moduJes are of importance 
and largely determine the nature of the corresponding SU(m)xS~(~ G) subduced 
spin algebras. Included in this topic is the determinacy-question for natural 
embedding of finite groups in a specific Sn group. Our most recent work has 
demonstrated how ideas concerning determinacy may be generalised [35] by 
recalling the properties of Voronoi polyhedra. 

For certain specific determinable S~ ~ G embedding associated with cage iso- 
topomeric NMR spin clusters, the geometric analogues given as alternatives to 
Cayley's algebraic theorem are especially appropriate [35]. They deserve to be 
more widely known for their A F- n model properties (see above), which provided 
the original motivation of this presentation. 
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v a general ised recoupl ing  label,  subsumes  both (kl - kn) fields 
and  any  n - 2 invariants .  

N,I~,  {N~} (respect ively)  the Hi lbe r t  (Liouvil le)  carr ier  spaces,  sub-  
spaces.  

®, (9 in g roup  theory ,  direct  p r o d u c t  and  direct  sum, respect ively.  

V ' for  all' symbol .  

[A'] (pr ior  to A) the incrementa l  irrep label over  a Sn-module  decompos i t i on .  

glJ G o t h i c  W, s y m b o l  refers to a uni t  set  o f  :A: in d o m i n a n c e  
order  as a vector .  

The  s lashed (crossed) ,~ and  ¢, Go th i c  (El, Cee) symbols ,  respect ively,  refer  to  the  
unit  set o f  g roup  irreps and  the s t anda rd  set o f  class or  cycle o p e r a t o r s  o f  a g roup .  
All  o the r  symbo l s  are s t anda rd  ma themat i ca l - t ex t  symbols .  
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